

1. System Configuration without SolarMagicTM

- All PV panels share the same current
- Output power is limited by the smallest current, typically the shaded panel(s)
- Output power tends to drop dramatically during the shaded condition

Simulation and Test Results of Shading

- Configuration: 10x180W+2x165W PV panels with two 180W panels shaded (17% shaded)
- The PV inverter output power drops from 1300W to 60W (95% reduction)

Solar Inverter Energy Production Improvement with SolarMagicTM

Virginia Polytechnic Institute and State University Future Energy Electronics Center (FEEC)

2. System Configuration with SolarMagicTM

- from the series shared current
- SolarMagicTM maximizes individual PV panel power ■ SolarMagicTM also decouples the local PV current
- Output power reduction is only due to the shaded panel(s)

Simulation and Test Results of Shading

- Same Configuration: 10x180W+2x165W PV panels with two 180W panels shaded (17% shaded) With SolarMagicTM, the PV inverter output power drops from 1450W to 1200W (17% reduction)

- micro-converters

Pictures of Hardware Setup

Steady-State Waveforms

VT-FEEC PV inverter operates successfully with ordinary PV strings and the output of series strings of SolarMagic[™] DC-DC micro-converters Future work is to operate with paralleled DC-DC